Муниципальное бюджетное общеобразовательное учреждение «Чегандинская средняя общеобразовательная школа»

РАССМОТРЕНО На заседании Педагогического совета Протокол № 1 От 30.08.2023 г.

Рабочая программа элективного курса «Общая химия» для обучающихся 11 классов

Составитель: Ижболдина Елена Николаевна учитель биологии и химии первой квалификационно категории Эксперт: Карелина Вера Николаевна учитель первой квалификационной категории

Пояснительная записка

Необходимость разработки элективного курса для учащихся 11 класса «Общая химия» обусловлена тем, что в соответствии с Основной образовательной программой среднего общего образования МБОУ «Чегандинская СОШ» на изучение учебного курса «Химия» не выделено ни одного часа. Такой подход к изучению химии не облегчает, а затрудняет ее усвоение. Особенностью данного курса является то, что занятия направлены на изучение курса общей химии в 11-ом классе. Это даёт возможность постоянно и последовательно изучать учебный материал курса, а учащимся получать более прочные знания по предмету. Программа курса послужит для существенного расширения знаний по химии, необходимых для конкретизации основных вопросов общей химии и для общего развития учеников.

Цель курса:

• расширение знаний, формирование умений и навыков у учащихся по решению расчетных задач и упражнений по химии, развитие познавательной активности и самостоятельности.

Задачи курса:

- углубление и расширение знаний по химии
- закрепить умения и навыки комплексного осмысления знаний и их применению при решении задач и упражнений;
- исследовать и анализировать алгоритмы решения типовых задач, находить способы решения комбинированных задач;
- формировать целостное представление о применении математического аппарата при решении химических задач;
- развивать у учащихся умения сравнивать, анализировать и делать выводы;
- способствовать формированию навыков сотрудничества в процессе совместной работы;
- развить интересы учащихся, увлекающихся химией.

Курс базируется на знаниях, получаемых учащимися при изучении химии в основной школе, и не требует знания теоретических вопросов, выходящих за рамки школьной программы. В то же время для успешной реализации этого элективного курса необходимо, чтобы ребята владели важнейшими вычислительными навыками, алгоритмами решения типовых химических задач, умели применять при решении задач важнейшие физические и химические законы.

В качестве основной формы организации учебных занятий предлагается проведение семинаров, на которых дается краткое объяснение теоретического материала, а так же решение задач и упражнений по данной теме.

Для повышения интереса к теоретическим вопросам и закрепления изученного материала, предусмотрены уроки-практикумы по составлению схем превращений, отражающих генетическую связь между классами неорганических и органических веществ и составлению расчетных задач, с указанием способов их решения.

При разработке программы элективного предмета акцент делался на те вопросы, которые в базовом курсе химии основной и средней школы рассматриваются недостаточно полно или не рассматриваются совсем, но входят в программы вступительных экзаменов в вузы. Большинство задач и упражнений взято из КИМов по ЕГЭ предыдущих лет, что позволяет подготовить учащихся к сдаче ЕГЭ.

Элективный курс «Химия в задачах и упражнениях» совместим с программой Н.Н.Гары. (Программа курса химии для 10-11классов) и учебно-методическим комплектом Г.Е Рудзитиса и Ф.Г. Фельдмана.

Элективный курс «Химия в задачах и упражнениях» предназначен для учащихся 10-11-ых классов и рассчитан 34 часа в 11 классе (1 час в неделю в 11 классе).

Требования к уровню подготовки выпускников

В результате изучения элективного предмета ученик должен

Знать/понимать

Важнейшие химические понятия: вещество, химический элемент, атом, молекула, масса атомов и молекул, моль, молярная масса, молярный объем, электролитическая диссоциация, гидролиз, электролиз, тепловой эффект реакции, энтальпия, теплота образования, химическое равновесие, константа равновесия, углеродный скелет, функциональная группа, гомология, структурная и пространственная изомерия;

Основные законы химии: закон сохранения массы веществ, периодический закон, закон постоянства состава, закон Авогадро, закон Гесса, закон действующих масс в кинетике и термодинамике; Классификацию и номенклатуру: неорганических и органических соединений;

Уметь

Называть: изученные вещества по «тривиальной» и международной номенклатуре;

Определять: валентность и степень окисления химических элементов, характер среды в водных растворах, окислитель и восстановитель, направление смещения равновесия под влиянием различных факторов, изомеры и гомологи, принадлежность веществ к различным классам органических соединений;

Проводить расчеты по химическим формулам и уравнениям реакций;

Осуществлять самостоятельный поиск химической информации с использованием различных источников (справочных, научных и научно-популярных изданий, компьютерных баз данных, ресурсов Интернета)

Календарно-тематическое планирование в 11класс 34 час (1 час в неделю)

№	Наименование темы	Элемент содержания		
п/п				
	Тема 1. Химический элемент (3)			
1	Строение атома. Изотопы.	Ядро и электронная оболочка. Электроны и протоны. Микромир и макромир.		
		Дуализм частиц микромира.		
		Решение задач		
2	Основные понятия и законы химии	Решение задач с применением закона сохранения массы вещества, закона		
		постоянства состава, закона сохранения энергии.		
3	Расчёты с применением уравнения Менделеева –	Решение задач		
	Клайперона			
4	Особенности размещения электронов по орбиталям в	Физический смысл квантовых чисел (главное, орбитальное, магнитное спиновое		
	атомах малых и больших периодов	квантовые числа). Понятие атомной орбитали. Заселение атомных орбиталей		
		электронами. Принцип минимума энергии, принцип Паули и правило Хунда.		
		Выполнение заданий		
5	Структура периодической системы химических	Структура периодической системы химических элементов Д. И. Менделеева.		

	элементов Д. И. Менделеева.	Определение строения атома по их координатам. Выполнение заданий
6	Валентность и степень окисления	Валентные электроны. Валентность. Валентные возможности атомов. Причина
		высшей валентности атомов, валентность элементов при образовании химической связи по
		донорно-акцепторному механизму, графические схемы строения внешних электронных слоев
		атомов химических элементов в возбужденном и невозбуждённом состоянии. Выполнение
		заданий
7	Основные виды химической связи, механизмы их	Вид химической связи в простых и сложных веществах, схемы образования веществ с
	образования	различными видами связи, механизм образования донорно-акцепторной, ковалентной связи,
		особенности водородной связи
8	Типы кристаллических решеток и свойства веществ	Ионная химическая связь и ионные кристаллические решетки. Ковалентная
		химическая связь и ее классификация: по механизму образования (обменный и
		донорно-акцепторный), по электроотрицательности (полярная и неполярная), по
		способу перекрывания электронных орбиталей (сигма и пи), по кратности
		(одинарная, двойная, тройная, полуторная). Полярность связи и полярность
		молекулы. Кристаллические решетки для веществ с этой связью: атомная и
		молекулярная. Металлическая химическая связь и металлическая кристаллическая
		решетка. Водородная связь: межмолекулярная и внутримолекулярная. Механизм
		образования этой связи и ее значение. Ионная связь как предельный случай
		ковалентной полярной связи; переход одного вида связи в другой; разные виды
		связей в одном веществе.
		Выполнение тестовых заданий
9	Характеристики химической связи.	основные характеристики химической связи (Насыщаемость, поляризуемость,
		направленность). Выполнение заданий
10	Пространственное строение молекул неорганических и	sp ³ - гибридизация у алканов, воды, аммиака, алмаза.
	органических веществ.	sp ² - гибридизация у соединений бора, алкенов, аренов, диенов, графита.
		sp - гибридизация у соединений бериллия, алкинов, карбина. Геометрия молекул
		названных веществ.
		Выполнение заданий
11	Дисперсные системы.	Понятие о дисперсных системах. Дисперсионная среда и дисперсная фаза. Девять
		типов систем и их значение в природе и жизни человека. Дисперсная система с
		жидкой средой: взвеси, коллоидные системы, их классификация. Золи и гели. Эффект
1.0		Тиндаля. Коагуляция. Синерезис. Молекулярные и истинные растворы.
12	Задачи с использованием разных способов выражения	Решение задач
1.0	концентрации растворов.	
13	Расчёты, связанные с приготовлением растворов.	Решение задач

	Правило смешения растворов, («правило креста»).	
14	Кристаллогидраты	Решение задач
15	Классификация химических реакций в органической и неорганической химии.	Понятие о химической реакции, её отличие от ядерной реакции. Реакции аллотропизации и изомеризации. Реакции, идущие с изменением состава вещества: по числу и характеру реагирующих и образующихся веществ (разложения, замещения, обмена, соединения); по изменению степеней окисления (ОВР и не ОВР); по тепловому эффекту (экзо- и эндотермические); по фазе (гомо- и гетерогенные); по направлению (обратимые и необратимые); по использованию катализатора (каталитические и некаталитические); по механизму (радикальные и ионные); по виду энергии, инициирующей реакцию (фотохимические, радиационные, электрохимические, термохимические). Выполнение заданий
16	Скорость химических реакций. Факторы, влияющие на скорость реакций.	Понятие о скорости. Скорость гомо- и гетерогенной реакций. Энергия активации. Факторы, влияющие на скорость реакций: природа реагирующих веществ, катализаторы, температура, концентрация. Катализ гомо- и гетерогенный, их механизмы. Ферменты, их сравнение с неорганическими катализаторами. Ингибиторы и каталитические яды. Поверхность соприкосновения реагирующих веществ. Выполнение заданий.
17	Химическое равновесие.	Понятие о химическом равновесии. Равновесные концентрации. Динамичность равновесия. Константа равновесия. Факторы, влияющие на смещение равновесия: концентрация, давление, температура. Принцип Ле Шателье. Выполнение заданий.
18	Производство серной кислоты контактным способом.	Промышленное получение химических веществ на примере производства серной кислоты. Принципы химического производства Химическое загрязнение окружающей среды и его последствия
19	Окислительно-восстановительные реакции(OBP).	Степень окисления. Классификация реакций в свете электронной теории. Основные понятия OBP. Методы составления уравнений OBP: метод электронного баланса, метод полуреакций. Влияние среды на протекание OBP. Классификация OBP. OBP в органической химии. Выполнение заданий.
20	Электролитическая диссоциация. (Э.Д.)	Электролиты и неэлектролиты. Механизм электролитической диссоциации с различным видом связи. Свойства катионов и анионов. Кислоты, соли, основания в свете Э.Д. Степень Э.Д.и её зависимость от природы электролита и его концентрации. Константа диссоциации. Ступенчатая диссоциация. Свойства растворов электролитов. Выполнение заданий
21	Водородный показатель.	Диссоциация воды. Константа её диссоциации. Ионное произведение воды,

		Водородный показатель - рН. Среды водных растворов электролитов. Значение
		водородного показателя для химических и биологических процессов.
22	Гидролиз.	Понятие гидролиза. Гидролиз органических и неорганических веществ
		(галогеналканов, сложных эфиров, углеводов, белков, АТФ) и его значение. Гидролиз
		солей - три случая. Ступенчатый гидролиз. Необратимый гидролиз. Практическое
		значение гидролиза. Выполнение заданий
<u> </u>		Положение металлов в периодической системе и строение их атомов. Простые
		вещества-металлы: строение кристаллов и металлическая химическая связь.
		Аллотропия. Общие физические свойства металлов и восстановительные свойства
		их: взаимодействие с неметаллами (кислородом, галогенами, серой, азотом,
		водородом), с водой, кислотами, растворами солей, органическими веществами
		(спиртами, галогеналканами, фенолом, кислотами), со щелочами. Оксиды и
		гидроксиды металлов. Зависимость свойств этих соединений от степеней окисления
		металлов. Значение металлов в природе и жизни организмов.
24	Коррозия металлов	Понятие коррозии. Химическая коррозия. Электрохимическая коррозия. Способы
		защиты металлов от коррозии.
		Общие способы получения металлов. Металлы в природе. металлургия и ее виды:
		пиро- и гидро- электрометаллургия. Электролиз расплавов и растворов соединений
		металлов и его значение.
25	Расчёты по теме «Электролиз»	Выполнение заданий
26	Неметаллы.	Положение неметаллов в периодической системе, строение их атомов.
		Электроотрицательность. Инертные газы. Неметаллы - простые вещества. Атомное и
		молекулярное строение их. Аллотропия. Химические свойства неметаллов.
		Окислительные свойства: взаимодействие с металлами, водородом, менее
		электроотрицательными неметаллами, некоторыми сложными веществами.
		Восстановительные свойства неметаллов в реакциях со фтором, кислородом,
		сложными веществами-окислителями (азотной и серной кислотами и др.).
		Водородные соединения неметаллов. Получение их синтезом и косвенно. Строение
		молекул и кристаллов этих соединений. Физические свойства. Отношение к воде.
		Изменение кислотно-основных свойств в периодах и группах Несолеобразующие и
		солеобразующие оксиды. Кислородные кислоты. Изменение кислотных свойств
		высших оксидов и гидроксидов неметаллов в периодах и группах.
27	Кислоты органические и неорганические.	Зависимость свойств кислот от степени окисления неметалла.
		Кислоты в свете протолитической теории. Сопряженные кислотно-основные пары.
		Классификация органических и неорганических кислот. Общие свойства кислот:

28 29	Амфотерные органические и неорганические соединения. Понятие о комплексных соединениях	взаимодействие органических и неорганических кислот с металлами, основными и амфотерными оксидами и гидроксидами, с солями, образование сложных эфиров. Особенности свойств концентрированной серной и азотной кислот. Особенности свойств уксусной и муравьиной кислот. Выполнение заданий Амфотерные соединения в свете протолитической теории. Амфотерность оксидов и гидроксидов переходных металлов: взаимодействие с кислотами и щелочами Комплексообразователь, лиганды, координационное число, внутренняя сфера, внешняя сфера. Номенклатура данных соединений. Примеры соединений. Амфотерность аминокислот: взаимодействие аминокислот со щелочами, кислотами, спиртами, друг с другом (образование полипептидов), образование внутренней соли
30	Генетическая связь между классами органических и неорганических соединений.	(биполярного иона Понятие о генетической связи и генетических рядах в неорганической и органической химии. Генетические ряды металла (на примере кальция и железа), неметалла (серы и кремния), переходного элемента (цинка). Генетические ряды и генетическая связь в органической химии (соединения двухатомного углерода). Единство мира веществ. Выполнение заданий
31	Цепочки превращений, отражающие генетическую связь между классами неорганических и органических веществ.	Выполнение заданий
32	Химия и экология.	Химическое загрязнение окружающей среды. Охрана гидросферы от химического загрязнения. Охрана почвы от химического загрязнения. Охрана атмосферы от химического загрязнения. Охрана флоры и фауны от химического загрязнения. Биотехнология и генная инженерия. Выступления учащихся
33	Химия и повседневная жизнь человека	Домашняя аптека. Моющие и чистящие средства. Средства борьбы с бытовыми насекомыми. Средства личной гигиены и косметики. Химия и пища. Маркировка упаковок пищевых и гигиенических продуктов и умение их читать. Экология жилища. Химия и генетика человека. Выступления учащихся
34	Подведение итогов	Выступления учащихся